Instant Monitoring of Food Quality

“Applications of spectroscopy from the farm to the fork”

Dilusha Silva

Microelectronics Research Group, School of Electrical, Electronic and Computer Engineering, The University of Western Australia

This work is supported by various funding bodies, including The Australian Research Council, The Grains Research and Development Corporation, The Defense Science and Technology Organization, and the Defense Advanced Research Projects Agency.
The Microelectronics Research Group

W. Prof. Lorenzo Faraone (Head of MRG)

Academic Staff (5 +1)

W. Prof. John Dell
Prof. Brett Nener
Prof. Adrian Keating
Prof. Giacinta Parish
Assoc. Prof. Farid Boussaid

Research Staff (11 + 2)

Prof. Jarek Antoszewski
Prof. John Bumgarner
Prof. Mariusz Martyniuk
Prof. Gilberto Umama Membreno
Prof. Dilusha Silva
Assoc. Prof. Wen Lei
Assoc. Prof. Ramin Rafiei
Assoc. Prof. Thuyen Nguyen
Asst. Prof. Nima Akhavan
Asst. Prof. Gregory Jolley
Asst. Prof. Gu Renjie
Asst. Prof. C. Venkatesh
Asst. Prof. Yongling Ren

PhD Students (12+)

Mr. Gino Putrino Mr. Ben Cheah
Ms. Anna Podolska Mr. Won Jei Lee
Mr. Moe Susli Mr. James Sharp
Mr. Haifeng Mao Ms. K. Brookshire
Mr. D. Tripathi +...
Mr. R. Nachimuthu Mr. Hemendra Kala
Mr. A. Choudhary

Technical Staff

Mr. Nir Zvison (Senior Cleanroom Tech.)

Administrative Staff

Ms. Sabine Betts
Overview

• Spectroscopy and its applications
• The MEMS microspectrometer
• Example applications in the food supply chain
 – On farm
 – At distribution/retail outlets
 – In the home
Spectroscopy and its applications

• Measures “colour” content of light,
 – Examines how the colour content is selectively absorbed/reflected by various materials.
 – Produces an optical “fingerprint”
• Spectroscopy finding increasing application in food industry
 – Agriculture (Growth)
 – Process control
 – Not so much in distribution (yet)
 – Not at all in the home (yet)
• Generally spectrometers are bulky and expensive
 – 10’s of kg
 – ~$50,000 - $100,000
 – Fragile and sensitive to vibrations
 – Need routine maintenance

http://michaeljacksun123.blogspot.com.au
http://kuthirummaln.people.cofc.edu
What are MEMS

- **Micro Electro Mechanical Systems**
 - Micro-scale mechanisms
 - Can generate motion on the micro-scale
 - Driven Electrically
 - Fabricated using same processes as IC technology

http://www.memx.com

http://www.princeton.edu/mae/people/faculty/soboyejo/research_group/research/mems/

MEMS for Spectrometry

• Initially developed for spectral imaging applications (defence)
 – Wavelength agile detectors for chemical identification
 – Improved target identification and detection

• Use MEMS technologies to acquire spectral measurements
 – Small and light-weight
 – Robust to vibrations
 – Potentially very low cost (leveraging IC technologies)
How does it work?

- Spectral filters created by separating mirrors a distance 'd'
- Filter tuned by moving top mirror
- Mirror moved electrically
Example applications
Grain drying

- Present
 - Air pumped through bin/tower containing wet grain
 - Location of moisture front unknown
 - General practice over-estimates drying time to ensure full drying
 - Significant fuel wastage because end point of drying is unknown

- With MRG Spectrometer
 - Moisture front can be monitored as it moves upwards through the bin
 - Drying can be stopped as soon as moisture front leaves surface of grain pile
 - Saves time, fuel, $$$
Faecal contamination in meat

- Feecal contamination in meat is:
 - completely unacceptable
 - completely unavoidable
- Infrared spectroscopy has been shown to successfully detect faecal contamination in poultry
- However, widespread application is hindered by cost.

Other applications

• Fresh Produce
 – Testing optimal ripeness
 – Testing pesticide contamination
 – Testing for rotten fruit

• Food forensics
 – Detecting source (Milk, Wine)
 – Detecting contaminants/additives (eg. Melamine in milk)

• Detecting freshness/expiry
 – Fruit/Vegetables
 – Milk
 – Meat

http://www.winenoviceinfo.com
And finally... the ultimate personal food quality monitor

- Smart phones commonly contain
 - GPS
 - Compass
 - Accelerometers
 - Camera (still & video)

- Why not a personal spectrometer incorporated into smart-phone

- For on-demand testing of:
 - Freshness of produce
 - Tampering/Counterfeit products
 - Contamination
 - Pesticide residues in fruit/veg
 - Allergens in processed products (anaphylaxis)

http://www.digitaltrends.com/cell-phone-reviews/apple-iphone-5-review/