Canola improvement in WA:
Past, current and future

Plant Production Systems Workshop 7 July 2008
Canola improvement in Australia

• 1970s: Public programmes based in Victoria, NSW and WA; responded to “disastrous” 1970-73 blackleg disease on rapeseed
 – Victoria DPI:
 • Greg Buzza, Phil Salisbury, Wayne Burton
 – NSW DPI:
 • Neil Wratten
 – WADA:
 • Dr N N Roy (breeder); Martin Barbetti (pathologist)
Canola improvement 1970s

• Breeding emphasis
 – Blackleg resistance:
 • moderate resistance in Japanese rapeseed
 • recurrent selection for polygenic resistance
 • Roy: wide crosses to *B. juncea*; not stable R
 – “Double low” quality from Canada/Europe:
 • low glucosinolates, low erucic acid
 • very susceptible to blackleg
 – Eliminate photoperiod requirement:
 • Canadian types respond to long days; too late
VIC DPI - Buzza, Salisbury 1970-on
Japanese blackleg MR, Canadian, European

Breeding institutions:

Note: varieties are not listed if their pedigrees are uncertain (eg, Rivette, Ripper, Farler, Lantern, AV-Sapphire, AG-Emblem, AG-Cornet). Hybrid and Clearfield (imidazolinone-tolerant) varieties are not listed.
WADA (Roy) 1973-88
Chinese, *B. juncea* parents; different sources of canola quality

Breeding institutions:
- **Canola Breeding, Inc.**
- **GreenEyes Oilseeds Limited**
- **Canadian Canola Group**

Note: Varieties are not listed if their pedigrees are uncertain (e.g., Rivette, Ripper, Purfer, Lantern, AV-Sapphire, AG-Emblem, AG-Cornet). Hybrid and Clearfield (imidazolinone-tolerant) varieties are not listed.
Intercrossing east-west 1983-1993; Roy’s breeding stops at WADA in 1988
TT introduced from Tower-TT in mid 1980s; first variety Siren in 1993 (50% Canadian)
Australian canola year 2000
Cowling, Field Crops Research (2007)

- Australian canola “closed” population:
 - 5 cycles of selection, av. 6 years
 - 4 varieties make up 50% of the ancestry
 - 11 parents in pedigrees
 - inbreeding coefficient of the population 0.21
 - 21% loss of alleles (random genetic drift)
 - Karoo grown in the WA wheatbelt 1999
 (fails due to drought intolerance, late flowering, blackleg susceptibility, low prices)
Australian canola year 2000

- Western Australian selection program:
 - National Brassica Improvement Programme and Department of Agriculture WA
 - lines crossed in east in, selected F_2, F_3, F_4
 - selections then made in WA in F_4, F_5, F_6
 - no primary selection in WA wheatbelt
 - no “new blood” until Surpass 400 and Surpass 501TT appear
 - canola production in WA retreats to higher rainfall areas
WA canola improvement 2000-on

• New genetic diversity
 – Major private breeding programmes in eastern Australia:
 • Pacific Seeds (Surpass 501TT, sylvestris R)
 • Pioneer (46C01, ex Canadian lines)
 • AgSeed Research (ATR-Cobbler, early)
 – CBWA starts in Western Australia 2001:
 • Use genetic diversity from Australia, Europe....
 • Primary selection in WA wheatbelt
 • Rapid cycles of recurrent selection
The WA wheatbelt – a unique environment

CBWA 2002 trials – primary test of doubled haploid lines
The WA wheatbelt – a unique environment

CBWA 2003 trials – primary test of doubled haploid lines
CBWA experience in WA

• Primary selection on fixed lines in target environments
 – Select immediately for adaptation:
 • WA wheatbelt (several sites)
 • Esperance (behaves like eastern Australia)
 • Eastern Australia (range of sites)

• Increase genetic diversity
 – Early maturity from many different sources

• Composite varieties (e.g. CB™ Tanami)
WA canola improvement - future

• Genetic diversity in international canola
 (Chen et al. Genome 2008)

- but, how to use it???
WA canola improvement - future

- Genetic diversity from wide crossing
 (Schelfhout et al. AJAR 2008)

- but, how to use it???
WA canola improvement - future

• Association mapping
 – exploiting linkage disequilibrium in breeding populations with marker assisted selection
 – combine “real” field data with molecular markers (association mapping) and pedigrees to improve estimates of breeding values and selection of parents for crossing
 – ideally applied to fixed lines grown across a broad spectrum of target environments relatively early in the breeding programme
WA canola improvement - future

• Using genetic diversity in commercial crop breeding programmes:
 Cowling et al. AJAR (submitted 2008)
 – two phases of introgression
 – Phase 1: fix new alleles in BC$_2$-derived lines
 – Phase 2: cross selections into elite parents
 – avoid loss of alleles through genetic drift
 – large effective elite population size (>20)
 – moderate selection pressure
 – beneficial new alleles at frequencies >0.1
WA canola improvement - future

• Hybrids
 • adoption? (higher priced seed, annual cost)
 • higher cost and risk for breeding companies

• Genetically modified canola
 • adoption? (technology use agreement, no farmer saved seed)
 • new genes – nitrogen use efficiency, drought tolerance, salinity tolerance, new food and health properties??
 • herbicide technology – longevity??
WA canola improvement - future

• Politics and business
 • canola breeding dominated by multinational corporations with GM products
 • WA market considered a “lost cause” for new products
 • WA growers last to access new technologies
 • risks to canola growers in not having competitive breeding for region (=own part of a breeding company)
 • risks to breeders relying on WA market (=must breed nationally)
WA canola improvement - future

• “Tough WA Canola” in 2020:
 • high yielding hybrids (direct harvested) with better nitrogen efficiency, rapid maturity, and rapid translocation of nutrients under drought stress conditions
 • not just a break crop – valuable food crop
 • new oil properties for health and longevity
 • clean green image WA canola will continue even after GM introduced
 • N from legumes for canola and cereals will increase value of legumes in system